Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Curr Opin Virol ; 66: 101408, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574628

RESUMEN

Bacille Calmette-Guérin (BCG) remains the sole licensed vaccine against tuberculosis (TB), despite its variable efficacy in protecting against pulmonary TB. The development of effective TB vaccines faces significant challenges, marked by the absence of validated correlates of protection and predictive animal models. Strategic approaches to enhance TB vaccines and augment BCG efficacy include utilising prime-boost strategies with viral-vectored vaccines and exploring innovative delivery techniques, such as mucosal vaccine administration. Viral vectors offer numerous advantages, including the capacity to accommodate genes encoding extensive antigenic fragments and the induction of robust immune responses. Aerosol delivery aligns with the route of Mycobacterium tuberculosis infection and holds the potential to enhance protective mucosal immunity. Aerosolised viral-vectored vaccines overcome anti-vector immunity, facilitating repeated aerosol deliveries.

2.
Lancet Infect Dis ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38621405

RESUMEN

BACKGROUND: Mycobacterium tuberculosis is the main causative agent of tuberculosis. BCG, the only licensed vaccine, provides inadequate protection against pulmonary tuberculosis. Controlled human infection models are useful tools for vaccine development. We aimed to determine a safe dose of aerosol-inhaled live-attenuated Mycobacterium bovis BCG as a surrogate for M tuberculosis infection, then compare the safety and tolerability of infection models established using aerosol-inhaled and intradermally administered BCG. METHODS: This phase 1 controlled human infection trial was conducted at two clinical research facilities in the UK. Healthy, immunocompetent adults aged 18-50 years, who were both M tuberculosis-naive and BCG-naive and had no history of asthma or other respiratory diseases, were eligible for the trial. Participants were initially enrolled into group 1 (receiving the BCG Danish strain); the trial was subsequently paused because of a worldwide shortage of BCG Danish and, after protocol amendment, was restarted using the BCG Bulgaria strain (group 2). After a dose-escalation study, during which participants were sequentially allocated to receive either 1 × 103, 1 × 104, 1 × 105, 1 × 106, or 1 × 107 colony-forming units (CFU) of aerosol BCG, the maximum tolerated dose was selected for the randomised controlled trial. Participants in this trial were randomly assigned (9:12), by variable block randomisation and using sequentially numbered sealed envelopes, to receive aerosol BCG (1 × 107 CFU) and intradermal saline or intradermal BCG (1 × 106 CFU) and aerosol saline. Participants were masked to treatment allocation until day 14. The primary outcome was to compare the safety of a controlled human infection model based on aerosol-inhaled BCG versus one based on intradermally administered BCG, and the secondary outcome was to evaluate BCG recovery in the airways of participants who received aerosol BCG or skin biopsies of participants who received intradermal BCG. BCG was detected by culture and by PCR. The trial is registered at ClinicalTrials.gov, NCT02709278, and is complete. FINDINGS: Participants were assessed for eligibility between April 7, 2016, and Sept 29, 2018. For group 1, 15 participants were screened, of whom 13 were enrolled and ten completed the study; for group 2, 60 were screened and 33 enrolled, all of whom completed the study. Doses up to 1 × 107 CFU aerosol-inhaled BCG were sufficiently well tolerated. No significant difference was observed in the frequency of adverse events between aerosol and intradermal groups (median percentage of solicited adverse events per participant, post-aerosol vs post-intradermal BCG: systemic 7% [IQR 2-11] vs 4% [1-13], p=0·62; respiratory 7% [1-19] vs 4% [1-9], p=0·56). More severe systemic adverse events occurred in the 2 weeks after aerosol BCG (15 [12%] of 122 reported systemic adverse events) than after intradermal BCG (one [1%] of 94; difference 11% [95% CI 5-17]; p=0·0013), but no difference was observed in the severity of respiratory adverse events (two [1%] of 144 vs zero [0%] of 97; 1% [-1 to 3]; p=0·52). All adverse events after aerosol BCG resolved spontaneously. One serious adverse event was reported-a participant in group 2 was admitted to hospital to receive analgesia for a pre-existing ovarian cyst, which was deemed unrelated to BCG infection. On day 14, BCG was cultured from bronchoalveolar lavage samples after aerosol infection and from skin biopsy samples after intradermal infection. INTERPRETATION: This first-in-human aerosol BCG controlled human infection model was sufficiently well tolerated. Further work will evaluate the utility of this model in assessing vaccine efficacy and identifying potential correlates of protection. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, Thames Valley Clinical Research Network, and TBVAC2020.

3.
Front Immunol ; 14: 1263457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869008

RESUMEN

The development of tuberculosis (TB) vaccines has been hindered by the complex nature of Mycobacterium tuberculosis (M.tb) and the absence of clearly defined immune markers of protection. While Bacillus Calmette-Guerin (BCG) is currently the only licensed TB vaccine, its effectiveness diminishes in adulthood. In our previous research, we identified that boosting BCG with an intranasally administered chimpanzee adenovirus expressing the PPE15 antigen of M.tb (ChAdOx1.PPE15) improved its protection. To enhance the vaccine's efficacy, we combined PPE15 with the other three members of the Esx-5a secretion system and Ag85A into a multi-antigen construct (5Ag). Leveraging the mucosal administration safety of ChAdOx1, we targeted the site of M.tb infection to induce localized mucosal responses, while employing modified vaccinia virus (MVA) to boost systemic immune responses. The combination of these antigens resulted in enhanced BCG protection in both the lungs and spleens of vaccinated mice. These findings provide support for advancing ChAdOx1.5Ag and MVA.5Ag to the next stages of vaccine development.


Asunto(s)
Mycobacterium bovis , Vacunas contra la Tuberculosis , Ratones , Animales , Vacuna BCG , Antígenos Bacterianos/genética , Vectores Genéticos , Inmunización Secundaria/métodos , Virus Vaccinia/genética
4.
J Neuropsychol ; 17(2): 279-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36351687

RESUMEN

Episodic memory decline is the prominent neuropsychological feature of typical Alzheimer's Disease (AD), for which current treatments have a limited clinical response. Recently, gamma entrainment therapy has been used as a non-invasive treatment in AD, providing evidence that it may have the potential to alleviate brain pathology and improve cognitive function in AD patients. At the same time, the precuneus (PC) has been recognized as a key area involved in AD related memory deficits and as a key node of the Default Mode Network. This study aimed to investigate the effectiveness of a 40 Hz Transcranial Magnetic Stimulation (TMS) intervention, delivered bilaterally to the precuneus for 10 days, in improving the patients' episodic memory performance. Secondary outcome variables investigated included general cognitive function, semantic and spatial memory, as well as attention and executive function. A concurrent multiple baseline design across five cases was employed. Four patients completed the study. Visual analysis combined with effect size indices were used to evaluate changes across phases. An increase in the average level of immediate recalled words was observed in three out of four patients. Effect size indices indicated significant improvement of attention skills in two patients. No treatment effect was observed for semantic and visual memory, or for executive function. An immediate treatment effect was observed in all patients' general cognitive function as assessed with the Alzheimer's Disease Assessment Scale (mean reduction of 5 points), which was maintained and improved further three months post-treatment. The neuropsychological evaluations indicated improved performance three months post-treatment in immediate and delayed recall, attention, phonological verbal fluency, anxiety, and neuropsychiatric symptoms. This study provides preliminary evidence for the efficacy of a novel non-pharmacological treatment using gamma-band TMS in addressing cognitive dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Memoria Episódica , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/diagnóstico , Recuerdo Mental/fisiología , Pruebas Neuropsicológicas , Lóbulo Parietal , Estimulación Magnética Transcraneal
5.
Vaccine ; 39(9): 1452-1462, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33549390

RESUMEN

A vaccine against tuberculosis (TB), a disease resulting from infection with Mycobacterium tuberculosis (M.tb), is urgently needed to prevent more than a million deaths per year. Bacillus Calmette-Guérin (BCG) is the only available vaccine against TB but its efficacy varies throughout the world. Subunit vaccine candidates, based on recombinant viral vectors expressing mycobacterial antigens, are one of the strategies being developed to boost BCG-primed host immune responses and efficacy. A promising vaccination regimen composed of intradermal (i.d.) BCG prime, followed by intranasally (i.n.) administered chimpanzee adenoviral vector (ChAdOx1) and i.n. or i.d. modified vaccinia Ankara virus (MVA), both expressing Ag85A, has been previously reported to significantly improve BCG efficacy in mice. Effector and memory immune responses induced by BCG-ChAdOx1.85A-MVA85A (B-C-M), were evaluated to identify immune correlates of protection in mice. This protective regime induced strong Ag85A-specific cytokine responses in CD4+ and CD8+ T cells, both in the systemic and pulmonary compartments. Lung parenchymal CXCR3+ KLRG1- Ag85A-specific memory CD4+ T cells were significantly increased in B-C-M compared to BCG immunised mice at 4, 8 and 20 weeks post vaccination, but the number of these cells decreased at the latter time point. This cell population was associated with the protective efficacy of this regime and may have an important protective role against M.tb infection.


Asunto(s)
Inmunidad Celular , Vacunas contra la Tuberculosis , Animales , Antígenos Bacterianos , Vacuna BCG , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Inmunización Secundaria , Memoria Inmunológica , Ratones , Mycobacterium tuberculosis , Vacunación
6.
NPJ Vaccines ; 5(1): 2, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908851

RESUMEN

Mycobacterium tuberculosis (M.tb) is responsible for more deaths globally than any other pathogen. The only available vaccine, bacillus Calmette-Guérin (BCG), has variable efficacy throughout the world. A more effective vaccine is urgently needed. The immune response against tuberculosis relies, at least in part, on CD4+ T cells. Protective vaccines require the induction of antigen-specific CD4+ T cells via mycobacterial peptides presented by MHC class-II in infected macrophages. In order to identify mycobacterial antigens bound to MHC, we have immunoprecipitated MHC class-I and class-II complexes from THP-1 macrophages infected with BCG, purified MHC class-I and MHC class-II peptides and analysed them by liquid chromatography tandem mass spectrometry. We have successfully identified 94 mycobacterial peptides presented by MHC-II and 43 presented by MHC-I, from 76 and 41 antigens, respectively. These antigens were found to be highly expressed in infected macrophages. Gene ontology analysis suggests most of these antigens are associated with membranes and involved in lipid biosynthesis and transport. The sequences of selected peptides were confirmed by spectral match validation and immunogenicity evaluated by IFN-gamma ELISpot against peripheral blood mononuclear cell from volunteers vaccinated with BCG, M.tb latently infected subjects or patients with tuberculosis disease. Three antigens were expressed in viral vectors, and evaluated as vaccine candidates alone or in combination in a murine aerosol M.tb challenge model. When delivered in combination, the three candidate vaccines conferred significant protection in the lungs and spleen compared with BCG alone, demonstrating proof-of-concept for this unbiased approach to identifying new candidate antigens.

7.
Expert Rev Vaccines ; 18(12): 1271-1284, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31876199

RESUMEN

Introduction: Tuberculosis (TB) remains a major health threat and it is now clear that the current vaccine, BCG, is unable to arrest the global TB epidemic. A new vaccine is needed to either replace or boost BCG so that a better level of protection could be achieved. The route of entry of Mycobacterium tuberculosis, the causative organism, is via inhalation making TB primarily a respiratory disease. There is therefore good reason to hypothesize that a mucosally delivered vaccine against TB could be more effective than one delivered via the systemic route.Areas covered: This review summarizes the progress that has been made in the area of TB mucosal vaccines in the last few years. It highlights some of the strengths and shortcomings of the published evidence and aims to discuss immunological and practical considerations in the development of mucosal vaccines.Expert opinion: There is a growing body of evidence that the mucosal approach to vaccination against TB is feasible and should be pursued. However, further key studies are necessary to both improve our understanding of the protective immune mechanisms operating in the mucosa and the technical aspects of aerosolized delivery, before such a vaccine could become a feasible, deployable strategy.


Asunto(s)
Administración a través de la Mucosa , Desarrollo de Medicamentos/tendencias , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis/prevención & control , Desarrollo de Medicamentos/métodos , Humanos
8.
JCI Insight ; 4(23)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31697647

RESUMEN

Immune activation is associated with increased risk of tuberculosis (TB) disease in infants. We performed a case-control analysis to identify drivers of immune activation and disease risk. Among 49 infants who developed TB disease over the first 2 years of life, and 129 healthy matched controls, we found the cytomegalovirus-stimulated (CMV-stimulated) IFN-γ response to be associated with CD8+ T cell activation (Spearman's rho, P = 6 × 10-8). A CMV-specific IFN-γ response was also associated with increased risk of developing TB disease (conditional logistic regression; P = 0.043; OR, 2.2; 95% CI, 1.02-4.83) and shorter time to TB diagnosis (Log Rank Mantel-Cox, P = 0.037). CMV+ infants who developed TB disease had lower expression of NK cell-associated gene signatures and a lower frequency of CD3-CD4-CD8- lymphocytes. We identified transcriptional signatures predictive of TB disease risk among CMV ELISpot-positive (area under the receiver operating characteristic [AUROC], 0.98, accuracy, 92.57%) and -negative (AUROC, 0.9; accuracy, 79.3%) infants; the CMV- signature was validated in an independent infant study (AUROC, 0.71; accuracy, 63.9%). A 16-gene signature that previously identified adolescents at risk of developing TB disease did not accurately classify case and control infants in this study. Understanding the microbial drivers of T cell activation, such as CMV, could guide new strategies for prevention of TB disease in infants.


Asunto(s)
Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/inmunología , Tuberculosis/complicaciones , Tuberculosis/inmunología , Vacuna BCG , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Estudios de Casos y Controles , Citomegalovirus , Femenino , Humanos , Lactante , Inflamación , Interferón gamma/genética , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Masculino , Mycobacterium tuberculosis , Factores de Riesgo , Sudáfrica , Transcriptoma
9.
Cell Rep ; 28(1): 218-230.e7, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269442

RESUMEN

Classical activation of macrophages (M(LPS+IFNγ)) elicits the expression of inducible nitric oxide synthase (iNOS), generating large amounts of NO and inhibiting mitochondrial respiration. Upregulation of glycolysis and a disrupted tricarboxylic acid (TCA) cycle underpin this switch to a pro-inflammatory phenotype. We show that the NOS cofactor tetrahydrobiopterin (BH4) modulates IL-1ß production and key aspects of metabolic remodeling in activated murine macrophages via NO production. Using two complementary genetic models, we reveal that NO modulates levels of the essential TCA cycle metabolites citrate and succinate, as well as the inflammatory mediator itaconate. Furthermore, NO regulates macrophage respiratory function via changes in the abundance of critical N-module subunits in Complex I. However, NO-deficient cells can still upregulate glycolysis despite changes in the abundance of glycolytic intermediates and proteins involved in glucose metabolism. Our findings reveal a fundamental role for iNOS-derived NO in regulating metabolic remodeling and cytokine production in the pro-inflammatory macrophage.


Asunto(s)
Ciclo del Ácido Cítrico , Inflamación/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Succinatos/metabolismo , Animales , /metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Glucólisis/efectos de los fármacos , Interferón gamma/farmacología , Interleucina-1beta/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Infecciones por Mycobacterium/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fragmentos de Péptidos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ácido Succínico/metabolismo , Espectrometría de Masas en Tándem
10.
Sci Rep ; 9(1): 5596, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944352

RESUMEN

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
Nat Commun ; 9(1): 5409, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30573728

RESUMEN

Inducible nitric oxide synthase (iNOS) plays a crucial role in controlling growth of Mycobacterium tuberculosis (M.tb), presumably via nitric oxide (NO) mediated killing. Here we show that leukocyte-specific deficiency of NO production, through targeted loss of the iNOS cofactor tetrahydrobiopterin (BH4), results in enhanced control of M.tb infection; by contrast, loss of iNOS renders mice susceptible to M.tb. By comparing two complementary NO-deficient models, Nos2-/- mice and BH4 deficient Gch1fl/flTie2cre mice, we uncover NO-independent mechanisms of anti-mycobacterial immunity. In both murine and human leukocytes, decreased Gch1 expression correlates with enhanced cell-intrinsic control of mycobacterial infection in vitro. Gene expression analysis reveals that Gch1 deficient macrophages have altered inflammatory response, lysosomal function, cell survival and cellular metabolism, thereby enhancing the control of bacterial infection. Our data thus highlight the importance of the NO-independent functions of Nos2 and Gch1 in mycobacterial control.


Asunto(s)
/análogos & derivados , GTP Ciclohidrolasa/fisiología , Óxido Nítrico Sintasa de Tipo II/fisiología , Óxido Nítrico/biosíntesis , Tuberculosis/inmunología , Animales , /metabolismo , Supervivencia Celular , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo
12.
Sci Rep ; 8(1): 14480, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262883

RESUMEN

A major contribution to the burden of Tuberculosis (TB) comes from latent Mycobacterium tuberculosis infections (LTBI) becoming clinically active. TB and LTBI probably exist as a spectrum and currently there are no correlates available to identify individuals with LTBI most at risk of developing active disease. We set out to identify immune parameters associated with ex vivo mycobacterial growth control among individuals with active TB disease or LTBI to define the spectrum of TB infection. We used a whole blood mycobacterial growth inhibition assay to generate a functional profile of growth control among individuals with TB, LTBI or uninfected controls. We subsequently used a multi-platform approach to identify an immune signature associated with this profile. We show, for the first time, that patients with active disease had the greatest control of mycobacterial growth, whilst there was a continuum of responses among latently infected patients, likely related to the degree of immune activation in response to bacillary load. Control correlated with multiple factors including inflammatory monocytes, activated and atypical memory B cells, IgG1 responses to TB-specific antigens and serum cytokines/chemokines. Our findings offer a method to stratify subclinical TB infections and the future potential to identify individuals most at risk of progressing to active disease and benefit from chemoprophylaxis.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Linfocitos B/inmunología , Inmunoglobulina G/inmunología , Tuberculosis Latente/inmunología , Monocitos/inmunología , Mycobacterium tuberculosis/inmunología , Adulto , Linfocitos B/patología , Quimiocinas/inmunología , Femenino , Humanos , Tuberculosis Latente/patología , Masculino , Monocitos/patología
13.
Vaccine ; 36(37): 5625-5635, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30097220

RESUMEN

Tuberculosis (TB) is the biggest cause of human mortality from an infectious disease. The only vaccine currently available, bacille Calmette-Guérin (BCG), demonstrates some protection against disseminated disease in childhood but very variable efficacy against pulmonary disease in adults. A greater understanding of protective host immune responses is required in order to aid the development of improved vaccines. Tissue-resident memory T cells (TRM) are a recently-identified subset of T cells which may represent an important component of protective immunity to TB. Here, we demonstrate that intradermal BCG vaccination induces a population of antigen-specific CD4+ T cells within the lung parenchyma which persist for >12 months post-vaccination. Comprehensive flow cytometric analysis reveals this population is phenotypically and functionally heterogeneous, and shares characteristics with lung vascular and splenic CD4+ T cells. This underlines the importance of utilising the intravascular staining technique for definitive identification of tissue-resident T cells, and also suggests that these anatomically distinct cellular subsets are not necessarily permanently resident within a particular tissue compartment but can migrate between compartments. This lung parenchymal population merits further investigation as a critical component of a protective immune response against Mycobacterium tuberculosis (M. tb).


Asunto(s)
Vacuna BCG/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Pulmón/inmunología , Tejido Parenquimatoso/inmunología , Tuberculosis Pulmonar/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Animales , Femenino , Inmunogenicidad Vacunal , Memoria Inmunológica , Interferón gamma , Pulmón/citología , Ratones , Ratones Endogámicos BALB C , Tejido Parenquimatoso/citología
14.
Infect Immun ; 86(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29661928

RESUMEN

The development of a vaccine against tuberculosis (TB), a disease caused by Mycobacterium tuberculosis, is urgently needed. The only currently available vaccine, M. bovis BCG, has variable efficacy. One approach in the global vaccine development effort is focused on boosting BCG using subunit vaccines. The identification of novel antigens for inclusion in subunit vaccines is a critical step in the TB vaccine development pathway. We selected four novel mycobacterial antigens recognized during the course of human infection. A replication-deficient chimpanzee adenovirus (ChAdOx1) was constructed to express each antigen individually, and these vectors were evaluated for protective efficacy in murine M. tuberculosis challenge experiments. One antigen, PPE15 (Rv1039c), conferred significant and reproducible protection when administered alone and as a boost to BCG vaccination. We identified immunodominant epitopes to define the protective immune responses using tetramers and intravascular staining. Lung parenchymal CD4+ and CD8+ CXCR3+ KLRG1- T cells, previously associated with protection against M. tuberculosis, were enriched in the vaccinated groups compared to the control groups. Further work to evaluate the protective efficacy of PPE15 in more stringent preclinical animal models, together with the identification of further novel protective antigens using this selection strategy, is now merited.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas contra la Tuberculosis/inmunología , Adenoviridae/genética , Animales , Vacuna BCG/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Vacunas de Subunidad/inmunología
15.
PLoS One ; 13(1): e0191038, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324800

RESUMEN

Tuberculosis (TB), caused by the macrophage-tropic pathogen Mycobacterium tuberculosis (M.tb) is a highly prevalent infectious disease. Since an immune correlate of protection or effective vaccine have yet to be found, continued research into host-pathogen interactions is important. Previous literature reports links between host iron status and disease outcome for many infections, including TB. For some extracellular bacteria, the iron regulatory hormone hepcidin is essential for protection against infection. Here, we investigated hepcidin (encoded by Hamp1) in the context of murine M.tb infection. Female C57BL/6 mice were infected with M.tb Erdman via aerosol. Hepatic expression of iron-responsive genes was measured by qRT-PCR and bacterial burden determined in organ homogenates. We found that hepatic Hamp1 mRNA levels decreased post-infection, and correlated with a marker of BMP/SMAD signalling pathways. Next, we tested the effect of Hamp1 deletion, and low iron diets, on M.tb infection. Hamp1 knockout mice did not have a significantly altered M.tb mycobacterial load in either the lungs or spleen. Up to 10 weeks of dietary iron restriction did not robustly affect disease outcome despite causing iron deficiency anaemia. Taken together, our data indicate that unlike with many other infections, hepcidin is decreased following M.tb infection, and show that hepcidin ablation does not influence M.tb growth in vivo. Furthermore, because even severe iron deficiency did not affect M.tb mycobacterial load, we suggest that the mechanisms M.tb uses to scavenge iron from the host must be extremely efficient, and may therefore represent potential targets for drugs and vaccines.


Asunto(s)
Anemia Ferropénica/complicaciones , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Hepcidinas/deficiencia , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/patología , Animales , Femenino , Hepcidinas/genética , Homeostasis , Hierro/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Tuberculosis/complicaciones
16.
Clin Vaccine Immunol ; 24(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28701467

RESUMEN

The development of a functional biomarker assay in the tuberculosis (TB) field would be widely recognized as a major advance in efforts to develop and to test novel TB vaccine candidates efficiently. We present preliminary studies using mycobacterial growth inhibition assays (MGIAs) to detect Mycobacterium bovis BCG vaccine responses across species, and we extend this work to determine whether a standardized MGIA can be applied in characterizing new TB vaccines. The comparative MGIA studies reviewed here aimed to evaluate robustness, reproducibility, and ability to reflect in vivo responses. In doing so, they have laid the foundation for the development of a MGIA that can be standardized and potentially qualified. A major challenge ahead lies in better understanding the relationships between in vivo protection, in vitro growth inhibition, and the immune mechanisms involved. The final outcome would be a MGIA that could be used with confidence in TB vaccine trials. We summarize data arising from this project, present a strategy to meet the goals of developing a functional assay for TB vaccine testing, and describe some of the challenges encountered in performing and transferring such assays.


Asunto(s)
Vacuna BCG/inmunología , Recuento de Colonia Microbiana/métodos , Mycobacterium tuberculosis/crecimiento & desarrollo , Vacunas contra la Tuberculosis/inmunología , Animales , Humanos , Lactante , Colaboración Intersectorial , Mycobacterium tuberculosis/inmunología , Reproducibilidad de los Resultados , Sudáfrica , Especificidad de la Especie , Tuberculosis/sangre , Tuberculosis/inmunología , Tuberculosis/microbiología , Vacunas contra la Tuberculosis/administración & dosificación
17.
Sci Rep ; 7: 43478, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256545

RESUMEN

The current vaccine against tuberculosis, live attenuated Mycobacterium bovis BCG, has variable efficacy, but development of an effective alternative is severely hampered by the lack of an immune correlate of protection. There has been a recent resurgence of interest in functional in vitro mycobacterial growth inhibition assays (MGIAs), which provide a measure of a range of different immune mechanisms and their interactions. We identified a positive correlation between mean corpuscular haemoglobin and in vitro growth of BCG in whole blood from healthy UK human volunteers. Mycobacterial growth in peripheral blood mononuclear cells (PBMC) from both humans and macaques was increased following the experimental addition of haemoglobin (Hb) or ferric iron, and reduced following addition of the iron chelator deferoxamine (DFO). Expression of Hb genes correlated positively with mycobacterial growth in whole blood from UK/Asian adults and, to a lesser extent, in PBMC from South African infants. Taken together our data indicate an association between Hb/iron levels and BCG growth in vitro, which may in part explain differences in findings between whole blood and PBMC MGIAs and should be considered when using such assays.


Asunto(s)
Deferoxamina/farmacología , Hemoglobinas/farmacología , Quelantes del Hierro/farmacología , Hierro/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Mycobacterium bovis/efectos de los fármacos , Adolescente , Adulto , Animales , Vacuna BCG/administración & dosificación , Índices de Eritrocitos , Expresión Génica , Hemoglobinas/biosíntesis , Hemoglobinas/genética , Humanos , Lactante , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Activación de Linfocitos , Macaca mulatta , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Cultivo Primario de Células , Vacunación
18.
Int J Mol Sci ; 18(2)2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28157153

RESUMEN

Reverse vaccinology (RV) is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML) techniques to distinguish bacterial protective antigens (BPAs) from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM) classifier that could discriminate BPAs (n = 200) from non-BPAs (n = 200) with an area under the curve (AUC) of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Biología Computacional/métodos , Aprendizaje Automático , Vacunas de Subunidad/inmunología , Antígenos Bacterianos/genética , Área Bajo la Curva , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/genética , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Humanos , Mutagénesis , Curva ROC , Máquina de Vectores de Soporte , Vacunas de Subunidad/genética
19.
BMC Infect Dis ; 16: 412, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519524

RESUMEN

BACKGROUND: In the absence of a validated animal model and/or an immune correlate which predict vaccine-mediated protection, large-scale clinical trials are currently the only option to prove efficacy of new tuberculosis candidate vaccines. Tools to facilitate testing of new tuberculosis (TB) vaccines are therefore urgently needed. METHODS: We present here an optimized ex vivo mycobacterial growth inhibition assay (MGIA) using a murine Mycobacterium tuberculosis infection model. This assay assesses the combined ability of host immune cells to inhibit mycobacterial growth in response to vaccination. C57BL/6 mice were immunized with Bacillus Calmette-Guérin (BCG) and growth inhibition of mycobacteria by splenocytes was assessed. Mice were also challenged with Mycobacterium tuberculosis Erdman, and bacterial burden was assessed in lungs and spleen. RESULTS: Using the growth inhibition assay, we find a reduction in BCG CFU of 0.3-0.8 log10 after co-culture with murine splenocytes from BCG vaccinated versus naïve C57BL/6 mice. BCG vaccination in our hands led to a reduction in bacterial burden after challenge with Mycobacterium tuberculosis of approx. 0.7 log10 CFU in lung and approx. 1 log10 CFU in spleen. This effect was also seen when using Mycobacterium smegmatis as the target of growth inhibition. An increase in mycobacterial numbers was found when splenocytes from interferon gamma-deficient mice were used, compared to wild type controls, indicating that immune mechanisms may also be investigated using this assay. CONCLUSIONS: We believe that the ex vivo mycobacterial growth inhibition assay could be a useful tool to help assess vaccine efficacy in future, alongside other established methods. It could also be a valuable tool for determination of underlying immune mechanisms.


Asunto(s)
Vacuna BCG/inmunología , Recuento de Colonia Microbiana/métodos , Vacunas contra la Tuberculosis/farmacología , Tuberculosis/prevención & control , Animales , Vacuna BCG/farmacología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mycobacterium bovis/inmunología , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/inmunología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Bazo/citología , Bazo/inmunología , Bazo/microbiología , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...